

ABSTRACT

III. Classes of Quality Flags

order to distinguish purpose and function:

Class 3a: Processing Quality Flags

Class 4: Metadata

Class 1: RDR Quality Flags

subsequent SDR production.

Class 2: SDR Quality Flags

Raw Data Records

is delivered in HDF format.

includes tagging out of range values,

Class 1: Raw Data Record (RDR) Quality Flags

Class 3c: Performance Exclusion Quality Flags

Class 3d: Quality Monitoring Quality Flags

Class 2: Sensor Data Record (SDR) Quality Flags

Class 3: Environmental Data Record (EDR) Quality Flags

Quality Flags have been categorized into the following four Classes in

Class 3b: Scene Conditions for Performance Degradation Quality Flags

Class 4a: Graceful Degradation with Alternate Ancillary Data Sources

Class 4b: General Granule Quality derived from SDR Quality Information

This class of quality flags is designated for possible future use. They are part

of the RDR and are designed so that ground processing can verify that data

recorded onboard are identical to data received at the ground. During initial

recomputed and verified. If verification is unsuccessful an error message is

results in the quality flag for the missing pixels to be set and the raw data to

be assigned a fill value. Both the raw digital numbers (or fill) data and the

pixel quality information are written to the verified RDR files for use during

This class of quality flags is calculated during the SDR production. The EDR

algorithms use these data quality flags as part of their input data selection

logic, particularly in checking quality of sensor data. Quality information

Sensor Data Records

Core

Metadata

(Collection

Zenith Angle,

Scan Line

Metadata

Actual Data

Value per

(Brightness)

emperature

Figure 2. Image distinguishing quality flags from Metadata, for RDRs, SDRs,

and EDRs with path of Application Packets to RDRs to SDRs to EDRs. All data

Reflectance, d

Describing

Collection

Environmental Data Records

ollection Metadata

mmon Metadata

Actual EDR Value

(Temperature,

Dobson Units, etc.)

written to a processing log and quality flags associate with the affected pixels

sensor RDR to verified VIIRS RDR ground processing, checksums are

are set. Any missing data discovered during this initial RDR processing

This poster describes the general architecture and implementation of quality flags for the NPOESS data products. The National Polar-Orbitin Environmental Satellite System's mission is to build the next generation of weather satellites and to provide data to its users. Data from 11 instruments are delivered to the ground system where products are created in near real-time within 20 minutes of reception. Raw Data Records (RDRs) (e.g. electron counts, gains, or spectral information) are converted to Sensor Data Records (SDRs) using sensor specific calibration information to create Top of Atmosphere reflectances, emissivities, or interferograms. These SDRs are converted to Environmental Data Records, which are measurements directly made from atmospheric physics or inferred using behavior modeled by radiativ transfer models. These EDRs are divided into horizontal and vertical reporting intervals according to specified requirements, taking into account each sensor's physics. Cells are then aggregrated into data granules sized uniquely for each sensor. Types of quality reporting at the Cell and Granule level include range error flags, data processing and scene condition flags, as well as exclusion and degradation flags. Additionally, the use of supporting data for these measurements, including ephemeris ancillary data (e.g. climatology), is indicated at the Granule Level.

I. Introduction

The term "Quality Flag" refers to product flags that communicate the quality of a data product, the scene conditions present in the sensor Field of View (FOW), as well as what branches or algorithms were exercised Given the large swath width of several NPOESS sensors, this information is unique for each horizontal cel. Additionally, summary statistics on a subset of quality flags is planned to be available in the granule metadata. Figure 1 illustrates these levels of information, and where the reporting of such information is appropriate.

In developing a systems design baseline for the NPP quality flags, eight factors are considered: (1) The baseline quality flags for science algorithms as delivered by the algorithm vendors, (2) The customers' utility for each of the flags, (3) What information is needed to support calibration and validation activities, (4) Scene conditions allowing relaxation of performance conditions, (5) The purpose served by each flag in the Science Code (Informational or Processing), (6) The RDR quality, as indicated by the SDR values, and (7) Aggregation methods for quality information, e.g. along instrument scan lines or for entire granules of information, and (8) Implications of additional storage volume for the delivered products and associated flags.

II. System Description

The processing of the Raw Data Records (RDRs), Sensor Data Records (SDRs), and Environmental Data Records (EDRs) occurs in the Processing subsystem of the Interface Data Processor (IDP) of the NPOESS ground system. The IDP is comprised of six subsystems: Ingest, Data Management, Infrastructure, Processing, Data Delivery, and Data Quality Management and is located in each of four Central locations for NOAA, AFWA, the Navy, and NASA. Quality flags and metadata are set during processing of SDRs and EDRs.

Quality Flags Granule Level Statistical aggregation process varies on a flag Selected quality flags from each pixel in a type by flag type basis granule are aggregated to form a quality flag representative of the granule quality. This aggregated flag is inserted into the metadata for the granule. VIIRS Cloud Mask Image and Cloud Mask courtesy of

Class 3 EDR Quality Flags Class 3 quality flags provide several purposes for the system, including:

Support error reporting Trigger alternate data processing threads Long term monitoring calibration/validation thresholds Provide insight into the algorithm functionality

quality flags is tailored to each EDR and is generated by the science code. This class of quality flags can be divided into three subclasses, including: processing, scene degradation conditions, performance exclusions and quality monitoring.

Class 3a: EDR Processing Quality Flags

This class of quality flags is used for processing within an EDR and during subsequent EDR processing. During the generation of each EDR, the quality flags are calculated and stored at the cel level, and are informational or used by subsequent EDR processes to identify scene conditions used to trigger alternate algorithm branches. The current science code architecture outputs the quality flags in the EDR format. In some cases, quality flags of predecessor EDRs are incorporated in the EDR output format. An example of this class of quality flag is the Land/Water Background flag used by the Surface Temperature IP to trigger downstream processing for the Land Surface Temperature EDR or Sea Surface Temperature EDR.

These flags test for Scene Conditions resulting in the relaxation of EDR performance requirements. These

This class of quality flags is used for alerting the Data Quality Monitoring Subsystem that the products being produced have quality parameters below a threshold value. Such alerts could be used to identify products or sensors that require updated calibration coefficients.

An example of this class of quality flag is the Cloud Confidence flag used by the Aerosol Optical Thickness IP.

Class 4: Metadata Quality Flags

This class of quality flags is used for identifying the average quality of a granule or the use of alternative ancillary data to calculate EDR values. These quality flags represent the general quality of the whole data granule calculated on the basis of compiled statistics on the quality flags at the cel

Class 4a Graceful Degradation with Alternate Ancillary Data Sources The granule level metadata indicates the cases where Alternate Ancillary Data Sources (e.g. climatology in stead of numerical weather forecast fields) are used for EDR input.

Class 4b General Granule Quality

This class of quality flags is used for triggering the use of Alternate Ancillary data inputs for the processing of an EDR. In the processing flow of EDR calculations, decision points maybe incorporated to allow the substitution of alternate data sources in place of low quality predecessor EDR inputs. These flags are aggregated as a percentage of pixels within the granule affected by poor conditions.

An example of this class of quality flag is the Cloud Detection Result & Confidence Indicator flag used by the Sea Surface Temperature EDR.

Figure 3. Possible scenario for NPOESS Preparatory Program Data Flow. Processes are shown in yellow, SDRs (green) have sensor specific quality flags (blue), and EDRs (purple) have quality flags and the horizontal cel level, and will possibly carry sensor quality data in metadata (blue).

SDR Quality Flagmentor rolation (Glassia) Quality Flags)

EEDRO Quiatize Friagminisor rolation and lago abyamay 4 a Quiatize Etags and

LST Land Surface Temperature

ICE EDGE LOC Ice Edge Location

EDGE MTION Sea Ice Edge Motion

ICE CONCENT Ice Edge Concentration

AVMP Atmos. Vertical Moisture Profile

AVPP Atmos. Vertical Pressure Profile

AVMP Atmos. Vertical Moisture Profile

IST Ice Surface Temperature

SST Sea Surface Temperature

FWICE Fresh Water Ice

SEA ICE AGE Sea Ice Age

TC Ozone Total Column

LP Ozone Limb Profile

SC/D Snow Cover and Depth

: Southware Personess

AOT Aerosol Optical Thickness

APSP Aerosol Particle Size Param

SUSP MTR Suspended Matter

CBH Cloud Base Height

CCL Cloud Cover/Layers

CTH Cloud Top Height

CTP Cloud Top Parameters

CTT Cloud Top Temperature

COT Cloud Optical Thickness

SURF ALB Surface Albedo

SURF TYPE Surface Type

IMAGERY VIIRS Imagery

VI Vegetative Index

FIRES Active Fire

CEPS Cloud Effective Particle Size

CM Cloud Mask

Seessora Data Record (SDR)

Environmental BatadRecord

termadiated Product

LEGEND (Figure 3, above)

Barth, Suzanna. NPP Operational Algorithm Quality Flags. Raytheon Company, 28 May 2004. Barth, Suzanna C. NPOESS Preparatory Program Operational Quality Flags,

REFERENCES

NORTHROP GRUMMAN

IV. Common Aggregation of Quality Flags into Metadata

level are those found in the VIIRS Cloud Mask, listed below.

SDR quality used as data inputs for a unique EDR.

Cloud Detection Result & Confidence Indicator

VIIRS Cloud Mask Quality Flags

Adjacent Pixel Cloud Confident Value

Non Cloud Obstruction (Heavy Aerosol)

Non Cloud Obstruction (Heavy Aerosol)

Temperature Difference test (BTM15-BTM12)

Temperature Difference test (BTM12-BTM13)

Cloud Mask IP Quality

Land/ water

Day/Night

Sun Glint

Snow/Ice Surface

Shadow Detected

Thin Cirrus (solar, RM9)

Thin Cirrus (IR, BTM15-BTM16)

Visible Reflectance Test (RM5)

Visible Reflectance Test (RM7)

Visible Ratio Test (RM7/RM5)

Imagery Resolution BTD Test

Conifer Boreal Forest

Spatial Uniformity Test

Cloud Imagery Resolution RI1 Test

Cloud Imagery Resolution RI2 Test

Fire Detected

IR Threshhold

High Cloud

Cloud Phase

Statistics gathered over Class 2 and Class 3 flags at the cel may be

summarized at the granule level metadata, as Class 4 Quality Flags.

The EDR metadata statistics may include summary information regarding

Input values and associated flags, or output values and associated flags.

Common tools count existing quality flag status at the cel level, for either

An example of Class 3 quality flags which may be reported at the metadata

IR Temperature Difference Test (BTM14 - BTM15 & BTM15 - BTM16)

Space Technology

Raytheon Company, NPOESS Interface Data Processing Segment Engineering Memo, June 1, 2004.

Mulvey, Gerry, and Suzanna Barth. Engineering Memorandom: VIIRS EDR Level Quality Flags, Northrop Grumman Corporation Mission Systems, Raytheon Company Information and Intelligence Systems, 24 November

Thompson, Harold R. EDR Interdependency Report, Northrup Grumman Space Technology, 16 June 2004.

ACKNOWLEDGEMENTS

Special thanks to George Moesteller and Rick Elsbernd, Raytheon Company, for providing technical clarifications on metadata and software tools.

Example shown is for VIIRS Cloud Mask.

Identify EDR confidence levels

The list of the NPOESS EDR and IP quality flags is quite extensive and is given in reference 3. Each set of

Class 3b: Scene Condition Quality Flags

conditions are tested on a pixel-by-pixel basis and are reported with EDR value for each pixel.

Class 3c: Performance Exclusion Quality Flags

This class of quality flags is used by Data Quality Monitoring Subsystem to identify those data elements that were collected during periods when then algorithms are anticipated to yield poor or erroneous results. The Data Delivery and Data Quality Monitoring Subsystems may choose to ignore these flags using threshold values for the percentage of a granule affected The Data Quality Monitoring Subsystem may us these flags to establish the need for calibration coefficient updates.

An example of this class of quality flag is the condition where Aerosol Optical Thickness exceeds the value of 1.0, indicating that the FOV is obscured.

Class 3d: Quality Monitoring Quality Flags